${f 1(a)}.$ The structures of diamond, chlorine, $C\emph{I}_2$, and poly(ethene) are shown

All the substances contain covalent bonds between the atoms.

Explain which substance has the highest melting point.
Use your knowledge of structure and bonding.

[6.
 [6]

(b).

Explain why ionic compounds can conduct electricity when dissolved in water, but not when solid.

[3]

ii.	Construct the dot and cross diagram for the ions in magnesium chloride, MgCl ₂ . Show the outer electron shells only.		
	Dot and cross diagram:		
Į			[2]
2. At	25 °C, fluorine is a gas, bromine is a liquid and iodine is a solid.		
Whic	h statement is correct?		
A B	At 25 °C, bromine does not have enough heat energy to melt. At 25 °C, fluorine does not have enough heat energy to condense.		
С	Bromine has a higher boiling point than fluorine and a higher melting point than iodine.		
D	lodine has a higher boiling point than bromine and a higher melting point than fluorine.		
Your	answer	[1]	
3. Gr	aphite and graphene are allotropes of carbon.		
Whic	h statement is correct about graphite and graphene?		
A	Graphite has delocalised electrons, graphene uses all electrons in bonding.		
B C	Graphite has four bonds from each carbon atom, graphene only has three. Graphite is a giant covalent structure, graphene is not.		
D	Graphite is made up of layers, graphene is a single layer.		
Your	answer	[1]	

[2]

4(a). Table 21.1 shows information about four different substances.

Table 21.1

Substance	Melting point (°C)	Appearance	Electrical conductor?
1	1085	shiny solid	yes
2	770	white crystals	yes when dissolved in water
3	120	flexible solid	no
4	78	white crystals	no

	[3:
Reason	
Substance	
Explain your answer.	
·	
Which of the substances is a polymer?	

(b). Fig. 21.1 shows two different polymer structures.

Fig. 21.1

Explain why polymers without cross-links can stretch more than polymers with cross-links.				

(c). Fig. 21.2 shows an electrical cable.

Fig. 21.2

Which	substance from Table 21.1 would be best to use to make each part of the electrical cable?
Explai	n your answers.
Part A	
Reaso	on
Part B	
Reaso	on
	[3]
5.	
i.	At –78 °C, and 0.1 MPa pressure, carbon dioxide changes state from a solid to a gas.
	Changing state from a solid to a gas is called subliming .
	Describe what happens to the movement and arrangement of the particles when a solid turns into a gas. Use the particle model.
	[3

ii. Carbon dioxide can be a liquid at different pressures and temperatures.

Pressure (MPa)	Melting point (°C)	Boiling point (°C)	Sublimation point (°C)
0.1			-78
1.0	– 56	–40	

State a temperature and a pressure at v	which carbon dioxide is a liquid .
---	---

Explain your answer.

Temperature	°C Pressure	MPa
Reason		
		[3]

6. Which row explains how the structure of graphene is different from the structure of graphite?

	Graphene	Graphite
A	3 covalent bonds to each carbon atom	4 covalent bonds to each carbon atom
В	covalent bonds in 3D	covalent bonds in one 2D plane
С	intermolecular forces	no intermolecular forces
D	one layer	many layers

Your answer		[1]
-------------	--	-----

[1]

[2]

7.	Which term	is a	correct	descri	otion (of ice	turnina	from a	a solid	to a	liauid?

Α	Chemical	change
---	----------	--------

B Evaporation

C Freezing

Your answer

D Physical change

	,	
Your a	answer	[1]
8. A ca	arbon nanotube is 1.4×10^{-9} m wide. A human hair is 1.4×10^{-4} m wide.	
How n	nany times wider is the hair compared to the nanotube?	
Α	100	
В	1000	
С	10 000	
D	100 000	

9. Some information about phosphorus compounds is shown in the table.

Name	Formula	Melting point (°C)	Boiling point (°C)	State at room temperature
Phosphorus trichloride	PC/ ₃	-94	76	
Phosphorus pentachloride	PCI ₅	161	167	
Phosphorus trifluoride	PF ₃	-152	-102	

i. Complete the table.

ii. Put a magaround the compound with the weakest intermolecular forces.

Phosphorus trichloride

Phosphorus pentachloride

Phosphorus trifluoride

Expla	ain your answer using information from the table.	
		[3]
iii.	The scientist thinks phosphorus trichloride is a giant covalent compound.	
	Explain why the scientist is incorrect.	
		[2]

10.

Zinc oxide, ZnO, is a compound containing zinc.

The table shows some information about four different zinc oxide particles.

Particle	Size of zinc oxide particles (m)	Cost per gram (£ / g)	Purity (%)
Α	1.85 × 10 ⁻⁷	0.05	95.00
В	6.54 × 10 ⁻⁹	0.31	95.99
С	8.52 × 10 ⁻⁷	0.87	99.99
D	4.02 × 10 ⁻⁸	1.84	99.99

\/\/hich	particles	ara	nanan	articles?
V V I II(/I I	Dai IIGGS	$a_{1}c_{2}$	ווחווטוו	ai iiic.s :

Tick (\checkmark) **two** boxes.

Α	

В

С

n [

ii.	. A scientist wants to buy some zinc oxide particles to use in suncream. A large surface area to ratio is important.	volume
	Which particle, A , B , C or D , would be the most suitable for use in suncream?	
	Explain your answer.	
	Particle	_
	Explanation	_
		_
		[3]
11.	Why do some polymers have different flexibilities?	
A	They are more flexible because they contain covalent bonds.	
B C	They are more flexible as they do not have strong cross-links. They are more rigid because they contain ionic bonds.	
D	They are more rigid because they have weak intermolecular forces.	
Υοι	ur answer	[1]
12.	Which statement about carbon allotropes is correct?	
A	Buckminsterfullerene is a type of carbon nanotube.	
B C	Carbon atoms in diamond and graphite form 4 covalent bonds. Graphene and graphite both have carbon atoms arranged in layers.	
D	Strong covalent bonds cause diamond to have a high melting point.	
Υοι	ur answer	[1]

END OF QUESTION PAPER